Abstract
This paper proposes a novel neural adaptive fixed-time control approach for the attitude stabilization and vibration suppression of flexible spacecraft. First, the neural network (NN) was introduced to identify the lumped unknown term involving uncertain inertia, external disturbance, torque saturation, and elastic vibrations. Then, the proposed controller was synthesized by embedding the NN compensation into the fixed-time backstepping control framework. Lyapunov analysis showed that the proposed controller guaranteed the stabilization of attitude and angular velocity to the adjustable small neighborhoods of zero in fixed time. The proposed controller is not only robust against uncertain inertia and external disturbance, but also insensitive to elastic vibrations of the flexible appendages. At last, the excellent stabilization performance and good vibration suppression capability of the proposed control approach were verified through simulations and detailed comparisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.