Abstract

In the braking control of single rope winding hoisting systems (SRWHS), reasonable braking torque is of great significance in reducing the probability of significant hidden dangers such as overwinding, overspeeding, rope breaking, vibration, conveyance crash and so on. However, dynamic nonlinearity, time-varying disturbances, mechanical dynamic uncertainties and measurement noise severely affect the practical braking control performance. To address those problems, a neural adaptive braking torque controller with disturbance compensation is developed to enhance the braking performance for a single rope winding hoisting system in this paper. Firstly, considering the elastic of steel wire rope, the nonlinear braking model of the SRWHS is established using Lagrange equations and an extended state observer (ESO) is introduced to estimate the system’s unmeasured states and modelling error. Next, a neural adaptive controller is developed to estimate and compensate the mechanical dynamical disturbances resulted from friction forces and random external disturbances. Then, a neural adaptive network controller combined with the ESO (ESONAC) is designed to solve the modelling nonlinearity, time-varying disturbances and system’s unmeasurable states. Finally, the advantages of the ESONAC in improving the braking control performance of winding hoisting systems is verified by comparative experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.