Abstract
The purpose of this study was to compare the effect of resistance training (RT) duration, including years of exposure, on agonist and antagonist neuromuscular activation throughout the knee extension voluntary torque range. Fifty-seven healthy men (untrained [UNT] n=29, short-term RT [12WK] n=14, and long-term RT [4YR] n=14) performed maximum and sub-maximum (20%-80% maximum voluntary torque [MVT]) unilateral isometric knee extension contractions with torque, agonist and antagonist surface EMG recorded. Agonist EMG, including at MVT, was corrected for the confounding effects of adiposity (ie, muscle-electrode distance; measured with ultrasonography). Quadriceps maximum anatomical cross-sectional area (QACSAMAX ; via MRI) was also assessed. MVT was distinct for all three groups (4YR +60/+39% vs UNT/12WK; 12WK +15% vs UNT; 0.001<P≤0.021), and QACSAMAX was greater for 4YR (+50/+42% vs UNT/12WK; [both] P<0.001). Agonist EMG at MVT was +44/+33% greater for 4YR /12WK ([both] P<0.001) vs. UNT, but did not differ between RT groups. The torque-agonist EMG relationship of 4YR displayed a right/down shift with lower agonist EMG at the highest common torque (196Nm) compared to 12WK and UNT (0.005≤P≤0.013; Effect size [ES] 0.90≤ES≤1.28). The torque-antagonist EMG relationship displayed a lower slope with increasing RT duration (4YR<12WK<UNT; 0.001<P≤0.094; 0.56≤ES≤1.31), and antagonist EMG at the highest common torque was also lower for 4YR than UNT (-69%; P<0.001; ES=1.18). In conclusion, 4YR and 12WK had similar agonist activation at MVT and this adaptation may be maximized during early months of RT. In contrast, inter-muscular coordination, specifically antagonist coactivation was progressively lower, and likely continues to adapt, with prolonged RT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scandinavian Journal of Medicine & Science in Sports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.