Abstract

Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call