Abstract

Sudden unexpected death in epilepsy (SUDEP) is a critical issue in epilepsy, and DBA/1 mice are a useful animal model of this devastating epilepsy sequela. The serotonin hypothesis for SUDEP proposes that modifying serotonergic function significantly alters susceptibility to seizure-induced respiratory arrest (S-IRA). Agents that enhance serotonergic function, including a selective serotonin reuptake inhibitor, fluoxetine, selectively prevent S-IRA in DBA/1 mice. This study examined fluoxetine-induced changes in brain activity using manganese-enhanced magnetic resonance imaging (MEMRI) to reveal sites in the DBA/1 mouse brain where fluoxetine acts to prevent S-IRA. DBA/1 mice were subjected to audiogenic seizures (Sz) after saline or fluoxetine (45mg/kg, intraperitoneal) administration. Control DBA/1 mice received fluoxetine or saline, but Sz were not evoked. A previous MEMRI study established the regions of interest (ROIs) for Sz in the DBA/1 mouse brain, and the present study examined MEMRI differences in the ROIs of these mouse groups. The neural activity in several ROIs was significantly increased in fluoxetine-treated DBA/1 mice that exhibited Sz but not S-IRA when compared to the saline-treated mice that exhibited both Sz and respiratory arrest. These structures included the periaqueductal gray (PAG), amygdala, reticular formation (sensorimotor-limbic network), Kölliker-Fuse nucleus, facial-parafacial group (respiratory network), and pontine raphe. Of these ROIs, only the PAG showed significantly decreased neural activity with saline pretreatment when seizure-induced respiratory arrest occurred as compared to saline treatment without seizure. The PAG is known to play an important compensatory role for respiratory distress caused by numerous exigent situations in normal animals. The pattern of fluoxetine-induced activity changes in the present study suggests that PAG may be the most critical target for fluoxetine's action to prevent seizure-induced sudden death. These findings have potential clinical importance, because there is evidence of anomalous serotonergic function and PAG imaging abnormalities in human SUDEP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call