Abstract

An animal moving through complex terrain must consider sensory cues around it and alter its movements accordingly. In the arthropod brain, the central complex (CC) receives highly preprocessed sensory information and sends outputs to premotor regions, suggesting that it may play a role in the central control of oriented locomotion. We performed tetrode recordings within the CC in cockroaches walking on an air-suspended ball to examine the role of the CC in turning behaviors. When a rod was placed near the cockroach's head, the cockroach touched the rod repeatedly with one or both antennae before locomotion was initiated. Some CC units responded to self-generated antennal contact with the object, but at lower levels compared with externally imposed antennal stimulation. The neural activity of other CC units responded to locomotion. We found that some CC units showed discrete firing fields corresponding to specific locomotion states. We also found that changes in firing rate of some CC units preceded changes in turning speed in one direction but not the other. Furthermore, such biased units were located in the side of the brain ipsilateral to the direction of the turning speed they could predict. Moreover, electrical stimulation of the CC elicited or modified locomotion, and the direction of some evoked locomotion could be predicted by the response property of locomotion-predictive units near the stimulation site. Therefore, our results suggest that, at the population level, asymmetrical activity in the CC precedes and influences turning behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call