Abstract

The basal ganglia (BG) play a central role in movement and it has been demonstrated that the discharge rate of neurons in these structures are modulated by the behavioral context of a given task. Here we used the antisaccade task, in which a saccade toward a flashed visual stimulus must be inhibited in favor of a saccade to the opposite location, to investigate the role of the caudate nucleus, a major input structure of the BG, in flexible behavior. In this study, we recorded extracellular neuronal activity while monkeys performed pro- and antisaccade trials. We identified two populations of neurons: those that preferred contralateral saccades (CSNs) and those that preferred ipsilateral saccades (ISNs). CSNs increased their firing rates for prosaccades, but not for antisaccades, and ISNs increased their firing rates for antisaccades, but not for prosaccades. We propose a model in which CSNs project to the direct BG pathway, facilitating saccades, and ISNs project to the indirect pathway, suppressing saccades. This model suggests one possible mechanism by which these neuronal populations could be modulating activity in the superior colliculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.