Abstract

Mice with reduced expression of the NR1 subunit of the NMDA receptor ( NR1 hypomorphic mice) display altered behavioral phenotypes that may relate to behavioral characteristics of schizophrenia. Altered phenotypes in the NR1 hypomorphs include marked deficits in species-typical behavioral interactions in tests of social aggression and social affiliation. To gain insight into neuroanatomical circuits disrupted by reduced NMDA receptor function, the present work compared regional brain activation in NR1 hypomorphic mice and their wild type controls after a resident–intruder test. Induction of Fos protein was used as an index of neuronal activation. Wild type mice exhibited robust induction of Fos in select brain regions, including specific nuclei of the hypothalamus and amygdala, lateral septum, and widespread regions of the cerebral cortex. Although the behavioral patterns were different for male and female mice, neuroanatomical patterns of Fos induction were remarkably similar for the two sexes. To determine socially specific components of Fos induction by the resident–intruder test, responses were compared for mice assessed in a test of general arousal and stress involving forced swim. Some common brain regions were activated by both tests but regionally specific differences were also found. The NR1 hypomorphic mice tested in the resident–intruder procedure displayed distinctly different behavioral interactions compared to the wild type mice and exhibited a significantly blunted Fos response in almost all brain regions. The mutant mice also exhibited reduced Fos in response to swim stress in specific brain regions. These data suggest that the NR1 hypomorphic mice have functional activation deficits in response to social challenge and swim stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call