Abstract
Various efforts have been dedicated to automatically generate coherent, condensed and informative summaries. Most concentrate on improving the capability of generating neural language models locally, but do not consider global information. In real cases, a summary is comprehensively influenced by the full content of the source text and is especially guided by its core sense. To seamlessly integrate global semantic representation into a summarization generation system, we propose to incorporate a neural generative topic matrix as an abstractive level of topic information. By mapping global semantics into a local generative language model, the abstractive summarization is capable of generating succinct and recapitulative words or phrases. Extensive experiments on DUC-2004 and Gigaword datasets convincingly validate the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.