Abstract

We propose NeuMIP, a neural method for representing and rendering a variety of material appearances at different scales. Classical prefiltering (mipmapping) methods work well on simple material properties such as diffuse color, but fail to generalize to normals, self-shadowing, fibers or more complex microstructures and reflectances. In this work, we generalize traditional mipmap pyramids to pyramids of neural textures, combined with a fully connected network. We also introduce neural offsets, a novel method which enables rendering materials with intricate parallax effects without any tessellation. This generalizes classical parallax mapping, but is trained without supervision by any explicit heightfield. Neural materials within our system support a 7-dimensional query, including position, incoming and outgoing direction, and the desired filter kernel size. The materials have small storage (on the order of standard mipmapping except with more texture channels), and can be integrated within common Monte-Carlo path tracing systems. We demonstrate our method on a variety of materials, resulting in complex appearance across levels of detail, with accurate parallax, self-shadowing, and other effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.