Abstract

Clinically relevant animal models of mammary carcinogenesis are crucial for the development and evaluation of new breast cancer chemopreventive agents. The neu-induced retroviral rat mammary carcinogenesis model is based on the direct in situ transfer of the activated neu oncogene into the mammary epithelium using a replication-defective retroviral vector. The resulting mammary carcinomas in intact Wistar-Furth rats exhibit a mixed hormonal response in the same proportion as has been observed in women. In intact rats, approximately 50% of mammary carcinomas can be prevented by tamoxifen treatment. In ovariectomized animals, the mammary carcinomas are hormonally nonresponsive and cannot be prevented by tamoxifen. We evaluated the efficacy of retinoic X receptor-selective retinoids (rexinoids) in this novel model of mammary carcinogenesis. The rexinoids LG100268 and bexarotene (LG1069, Targretin) were highly efficacious in the prevention of neu-induced mammary carcinomas. Dietary LG100268 at 100 mg/kg diet decreased tumor multiplicity by 32% (P = 0.0114) in intact rats and 50% (P < 0.0001) in ovariectomized rats. Bexarotene treatment at a dose of 250 mg/kg diet was associated with reductions in tumor multiplicity of 84% (P < 0.0001) and 86% (P < 0.0001) in intact and ovariectomized animals, respectively. In addition to tumor multiplicity, proliferation and apoptosis were modulated by bexarotene treatment independently of estrogen signaling. The neu-induced retroviral rat mammary carcinogenesis model represents a valuable addition to existing rodent chemoprevention models. The model is useful for assessing the efficacy of chemopreventive agents, specifically those compounds that target hormonally nonresponsive tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.