Abstract

For the management of gas transportation networks, it is essential to know how the stationary states of the system are determined by the boundary data. The isothermal Euler equations are an accurate pde-model for the gas flow through each pipe. A compressibility factor is used to model the nonlinear relationship between density and pressure that occurs in real gas in contrast to ideal gas. The gas flow through the nodes is governed by algebraic node conditions that require the conservation of mass and the continuity of the pressure. We examine networks that are described by arbitrary finite graphs and show that for suitably chosen boundary data, subsonic stationary states exist and are uniquely determined by the boundary data. Our construction of the stationary states is based upon explicit representations of the stationary states on each single pipe that can easily be evaluated numerically. We also use the monotonicity properties of these states as functions of the boundary data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call