Abstract

Mineral-associated organic matter (MAOM), the largest soil carbon pool, is formed through a series of organo-mineral interaction mechanisms. However, different organo-mineral fractions relevant to specific stabilization mechanisms and their response to environmental variables are poorly understood, which hinders accurate prediction of MAOM preservation under climate change. We applied sequential chemical extraction to separate MAOM into different organo-mineral fractions. To assess of response of different organo-mineral fractions to climate change, alpine forest soils with high environmental sensitivity along a controlled environmental gradient were selected. Residual OM and weakly adsorbed OM were the primary organo-mineral fractions, accounting for approximately 45.1–67.7 % and 16.4–30.6 %, respectively, of the total organic carbon (TOC). Climate exerted considerable indirect effects on the preservation of organo-mineral fractions through weathering and edaphic and biotic variables. Moreover, organo-mineral fractions were closely associated with metal cations (mainly Fe3+/Al3+) and secondary minerals, forming complex networks. Water-soluble OM (WSOM), weakly adsorbed OM and Fe/Al oxyhydroxides-stabilized OM were tightly linked, occupying the central position of the networks, and were closely related to soil pH, moisture and prokaryotic composition, indicating that edaphic and biotic factors might play important roles in maintaining the network structure and topology. In addition, Fe/Al-OM complexes, oxyhydroxides-stabilized OM and residual OM in the network were greatly impacted by climate and weathering factors, including precipitation, temperature and the plagioclase index of alteration (PIA). The complex network among organo-mineral fractions sheds light on MAOM dynamic stabilization for better predicting MAOM preservation under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.