Abstract

Connections are ubiquitous. The hydrologic cycle is perhaps the best example: every component of this cycle is connected to every other component, but some connections are stronger than the others. Unraveling the nature and extent of connections in hydrologic systems, as well as their interactions with others, has always been a fundamental challenge in hydrology. Despite the progress in this direction, a strong scientific theory that is suitable for studying all types of connections in hydrology continues to be elusive. In this article, I argue that the theory of networks provides a generic theory for studying all types of connections in hydrology. After presenting a general discussion of complex systems as networks, I offer a brief account of the history of development of network theory and some basic concepts and measures of complex networks, and explain the relevance of complex network theory for hydrologic systems, with three specific examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call