Abstract
Nowadays, the effectiveness of any smart transportation management or control strategy would heavily depend on reliable traffic data collected by sensors. Two problems regarding sensor data quality have received attention: first, the problem of identifying malfunctioning sensors; second, reconstruction of traffic flow. Most existing studies concerned about identifying completely malfunctioning sensors whose data should be discarded. In this paper, we focus on the problem of error detection and data recovery of partially malfunctioning sensors that could provide valuable information. By integrating a sensor measurement error model and a transportation network model, we propose a Generalized Method of Moments (GMM) based estimation approach to determine the parameters of systematic and random errors of traffic sensors in a road network. The proposed method allows flexible data aggregation that ameliorates identification and accuracy. The estimates regarding both systematic and random errors are utilized to conduct hypothesis test on sensor health and to estimate true traffic flows with observed counts. The results of three network examples with different scales demonstrate the applicability of the proposed method in a large variety of scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.