Abstract
Abstract A novel model-predictive-control strategy with a timeout scheme and p-step-ahead state estimation is presented in this paper to overcome the adverse influences of stochastic time delays and packet losses encountered in network-based distributed real-time control. An open-loop unstable magnetic-levitation (maglev) test bed was constructed and employed for its experimental verification. The compensation algorithms developed in this paper deal with the network-induced stochastic time delays and packet losses in both the forward path and the feedback path simultaneously. With the p-sampling-period delay upper bound, the networked control system (NCS) can also accommodate up to p−1 successive packet losses. Experimental results demonstrate the feasibility and effectiveness of this networked real-time control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.