Abstract

Networked control allows monitoring a plant from a remote location through a communication channel and owns several attractive advantages. One of the major challenges is the control problem of stochastic nonlinear systems with packet losses and/or communication delays. In this paper, the networked control of nonlinear systems with stochastic disturbances in the presence of packet losses is investigated. In order to reduce the effect of data packet losses on the system stability, a model predictive control method is proposed to compensate the packet losses in communication channel. By using stochastic stability theory and a previously designed Lyapunov controller, pth moment practical stability of the networked control system (NCS) is discussed, and a sufficient condition guaranteeing the practical stability of the closed-loop system is provided. Based on the sufficient condition, the relation formula between any prior given control target and the corresponding maximum time of consecutive packet losses is derived, and it is found that the ultimate bound of pth moment is mainly dependent on the maximum time of consecutive packet losses. As an example, networked control of the nonlinear chaotic Lorenz system with stochastic disturbances and data packet losses is considered to verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.