Abstract
With the escalation of heterogeneous data traffic, the research on optical wireless communication (OWC) has attracted much attention, owing to its advantages such as wide spectrum, low power consumption and high security. Ubiquitous optical devices, e.g. light-emitting diodes (LEDs) and cameras, are employed to support optical wireless links. Since the distribution of these optical devices is usually dense, multiple-input-multiple-output (MIMO) can be naturally adopted to attain spatial diversity gain or spatial multiplexing gain. As the scale of OWC networks enlarges, optical MIMO can also collaborate with network-level operations, like user/AP grouping, to enhance the network throughput. Since OWC is preferred for short-range communications and is sensitive to the directions/rotations of transceivers, optical MIMO links vary frequently and sharply in outdoor scenarios when considering the mobility of optical devices, raising new challenges to network design. In this work, we present an overview of optical MIMO techniques, as well as the cooperation of MIMO and user/AP grouping in OWC networks. In consideration of the challenges for outdoor OWC, key technologies are then proposed to facilitate the adoption of optical MIMO in outdoor scenarios, especially in vehicular ad hoc networks. Lastly, future applications of MIMO in OWC networks are discussed. This article is part of the theme issue 'Optical wireless communication'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.