Abstract

A scalable distributed formal analysis (DFA) via reachable set computation is presented to efficiently evaluate the stability of networked microgrids under disturbances induced by distributed energy resources (DERs). With mathematical rigor, DFA can efficiently compute the boundaries of all possible dynamics in a distributed way, which are unattainable via traditional time-domain simulations or direct methods. A distributed quasi-diagonalized Geršgorin (DQG) theory is then combined with DFA to identify systems’ stability margins. A microgrid-oriented decomposition approach is established to decouple a networked microgrid system and enable calculations of DFA and DQG while also preserving the privacy of each subsystem. Numerical tests on a networked microgrid system validate that DFA and DQG facilitate the efficient calculation and analysis of networked microgrids’ stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.