Abstract

ABSTRACTThis paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input–output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call