Abstract

This letter investigates the fuzzy model predictive control synthesis of networked controlled power buffer for dynamic stabilization of a dc microgrid (MG). The proposed is based on Takagi–Sugeno fuzzy model and model predictive scheme to mitigate the network-induced delays from the sensor-to-controller and controller-to-actuator links. By employing the so-called time-stamp technique and network delay compensator (NDC), the delays are computed and compensated, which improves the effectiveness and robustness of the proposed controller. Due to the usage of two NDCs, the presented approach is robust against the network delays and results in small computational burden. Therefore, it can widely be employed on large distributed power systems. To show the merits of the proposed approach, it is applied to a dc MG that feeds one constant power load. Results show the simplicity of designing the controller and better robustness against the network's delays compared to the state-of-the-art methods. Additionally, hardware-in-the-loop simulations are presented to prove the practical applicability of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.