Abstract
This paper is concerned with the distributed and centralized fusion filtering problems in sensor networked systems with random one-step delays in transmissions. The delays are described by Bernoulli variables correlated at consecutive sampling times, with different characteristics at each sensor. The measured outputs are subject to uncertainties modeled by random parameter matrices, thus providing a unified framework to describe a wide variety of network-induced phenomena; moreover, the additive noises are assumed to be one-step autocorrelated and cross-correlated. Under these conditions, without requiring the knowledge of the signal evolution model, but using only the first and second order moments of the processes involved in the observation model, recursive algorithms for the optimal linear distributed and centralized filters under the least-squares criterion are derived by an innovation approach. Firstly, local estimators based on the measurements received from each sensor are obtained and, after that, the distributed fusion filter is generated as the least-squares matrix-weighted linear combination of the local estimators. Also, a recursive algorithm for the optimal linear centralized filter is proposed. In order to compare the estimators performance, recursive formulas for the error covariance matrices are derived in all the algorithms. The effects of the delays in the filters accuracy are analyzed in a numerical example which also illustrates how some usual network-induced uncertainties can be dealt with using the current observation model described by random matrices.
Highlights
Estimation problems in networked stochastic systems have been widely studied, especially in the past decade, due to the wide range of potential applications in many areas, such as target tracking, air traffic control, fault diagnosis, computer vision, and so on, and important advances in the design of multisensor fusion techniques have been achieved [1]
Centralized fusion estimators are obtained by processing in the fusion center the measurements received from all sensors; in the distributed fusion method, first, local estimators, based on the measurements received from each sensor, are obtained and, these local estimators are combined according to a certain information fusion criterion
This paper deals with the distributed and centralized fusion filtering problems from randomly delayed observations coming from networked sensors; the signal measurements at the different sensors are noisy linear functions with random parameter matrices, and the sensor noises are assumed to be correlated and cross-correlated at the same and consecutive sampling times
Summary
Estimation problems in networked stochastic systems have been widely studied, especially in the past decade, due to the wide range of potential applications in many areas, such as target tracking, air traffic control, fault diagnosis, computer vision, and so on, and important advances in the design of multisensor fusion techniques have been achieved [1]. The main contributions of the current research are highlighted as follows: (i) The treatment used to address the estimation problem, based on covariance information, does not require the evolution model generating the signal process; the proposed fusion algorithms are applicable to the conventional state-space model formulation; (ii) Random parameter matrices are considered in the measured outputs, which provide a fairly comprehensive and unified framework to describe some network-induced phenomena, such as multiplicative noise uncertainties or missing measurements, and correlation between the different sensor measurement noises is simultaneously considered;.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.