Abstract

We study cyber security issues in networked control of a linear dynamical system. Specifically, the dynamical system and the controller are assumed to be connected through a communication channel that face malicious attacks as well as random packet losses due to unreliability of transmissions. We provide a probabilistic characterization for the link failures which allows us to study combined effects of malicious and random packet losses. We first investigate almost sure stabilization under an event-triggered control law, where we utilize Lyapunov-like functions to characterize the triggering times at which the plant and the controller attempt to exchange state and control data over the network. We then provide a look at the networked control problem from the attacker's perspective and explore malicious attacks that cause instability. Finally, we demonstrate the efficacy of our results with numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.