Abstract
Traffic matrices are used in many network engineering tasks, for instance optimal network design. Unfortunately, measurements of these matrices are error-prone, a problem that is exacerbated when they are extrapolated to provide the predictions used in planning. Practical network design and management should consider sensitivity to such errors, but although robust optimisation techniques exist, it seems they are rarely used, at least in part because of the difficulty in generating an ensemble of admissible traffic matrices with a controllable error level. We address this problem in our paper by presenting a fast and flexible technique of generating synthetic traffic matrices. We demonstrate the utility of the method by presenting a methodology for robust network design based on adaptation of the mean-risk analysis concept from finance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.