Abstract

Critical power system applications like contingency analysis and optimal power flow calculation rely on the power system state estimator. Hence the security of the state estimator is essential for the proper operation of the power system. In the future more applications are expected to rely on it, so that its importance will increase. Based on realistic models of the communication infrastructure used to deliver measurement data from the substations to the state estimator, in this paper we investigate the vulnerability of the power system state estimator to attacks performed against the communication infrastructure. We define security metrics that quantify the importance of individual substations and the cost of attacking individual measurements. We propose approximations of these metrics, that are based on the communication network topology only, and we compare them to the exact metrics. We provide efficient algorithms to calculate the security metrics. We use the metrics to show how various network layer and application layer mitigation strategies, like single and multi-path routing and data authentication, can be used to decrease the vulnerability of the state estimator. We illustrate the efficiency of the algorithms on the IEEE 118 and 300 bus benchmark power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call