Abstract

Regeneration of damaged central nervous systems (CNS) is an important topic in neuroscience and neuroengineering. Grafting new neurons derived from pluripotent stem cells into damaged regions can be done to restore functions after injury. Little is known, however, about network-wide interactions between stem-cell-derived neurons and CNS neurons. In this study, we developed a co-culture method of stem cell-derived neuronal networks and CNS networks and observed spontaneous activity in the co-culture samples. By using a microfabricated poly(dimethylsiloxane) device having two culture compartments and 20 connecting microconduits, we are able to compartmentalize P19-derived neurons and mouse cortical neurons and connect them via the microconduits. Furthermore, we combined the co-culture device and a microelectrode array (MEA)-based recording system and recorded spontaneous activity in the co-cultured networks. We found that periodic synchronized bursting spreading over both neuronal networks occurred during the second week in vitro and that P19-derived neurons in the co-cultured networks had different developmental processes compared with those grown in monoculture. These findings suggest that functional interactions form between P19-dervived neurons and mouse cortical neurons and that the co-culture method is useful for exploring the network-wide integrations between stem cell-derived neurons and CNS neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.