Abstract

Slices prepared from cortical tissue that is surgically removed from patients to treat their epilepsy provide an opportunity to directly study the mechanisms underlying ictal activity. However, human in vitro studies have several limitations. One problem that may severely compromise investigations of network properties in these slices relates to how difficult it is to cut the tissue at angles that optimally preserve columnar connectivity. To address this problem, the authors investigated the degree of network variability in human tissue across samples and, within a single tissue sample, across slices cut at different angles using a novel form of optical imaging based on flavoprotein autofluorescence. The authors found a high degree of variability in the spatial extent, degree, and patterning of activation in slices from different samples. They also found variability across the slices cut from a single tissue sample at different angles. Indeed, these results suggest that human tissue samples have disparate degrees of network activity and that abnormal tissue may be confined to clusters of synchronously oscillating domains. Assessing circuit connectivity in a slice a priori will allow investigators to control for the overall degree of slice connectivity and selectively target active (or inactive) areas, making for better-informed comparisons of data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.