Abstract

A measure is derived to quantify directed information transfer between pairs of vertices in a weighted network, over paths of a specified maximal length. Our approach employs a general, probabilistic model of network traffic, from which the informational distance between dynamics on two weighted networks can be naturally expressed as a Jensen Shannon divergence. Our network transfer entropy measure is shown to be able to distinguish and quantify causal relationships between network elements, in applications to simple synthetic networks and a biological signaling network. We conclude with a theoretical extension of our framework, in which the square root of the Jensen Shannon Divergence induces a metric on the space of dynamics on weighted networks. We prove a convergence criterion, demonstrating that a form of convergence in the structure of weighted networks in a family of matrix metric spaces implies convergence of their dynamics with respect to the square root Jensen Shannon divergence metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call