Abstract

The brain is a complex network of interconnected and interacting neuronal populations. Global efforts to understand the emergence of behavior and the effect of perturbations depend on accurate reconstruction of white matter pathways, both in humans and in model organisms. An emerging animal model for next-generation applied neuroscience is the common marmoset (Callithrix jacchus). A recent open respository of retrograde and anterograde tract tracing presents an opportunity to systematically study the network architecture of the marmoset brain (Marmoset Brain Architecture Project; http://www.marmosetbrain.org). Here we comprehensively chart the topological organization of the mesoscale marmoset cortico-cortical connectome. The network possesses multiple nonrandom attributes that promote a balance between segregation and integration, including near-minimal path length, multiscale community structure, a connective core, a unique motif composition, and multiple cavities. Altogether, these structural attributes suggest a link between network architecture and function. Our findings are consistent with previous reports across a range of species, scales, and reconstruction technologies, suggesting a small set of organizational principles universal across phylogeny. Collectively, these results provide a foundation for future anatomical, functional, and behavioral studies in this model organism.

Highlights

  • The brain is a networked system of distributed neuronal populations

  • We provide a comprehensive characterization of the marmoset brain connectome using a recently published cortico-cortical tract tracing atlas

  • We find evidence of nonrandom organization across multiple scales, including near-minimal path length, multiscale community structure, densely interconnected hubs, a unique motif fingerprint, and the existence of topological cavities

Read more

Summary

Introduction

The brain is a networked system of distributed neuronal populations. The complex arrangement of anatomical projections supports interregional signaling and functional interactions, manifesting as patterned neural activity. Collective signaling in the network is thought to support perception, cognition, and action. Recent technological advances permit extensive tracing and imaging of neural circuits in humans and nonhuman model organisms. Clustering: The proportion of a node’s neighbors that are neighbors (connected) with each other. Hub: A node that is disproportionately well connected or central in the network

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call