Abstract
Network embedding is a highly effective method to learn low-dimensional node vector representations with original network structures being well preserved. However, existing network embedding algorithms are mostly developed for a single network, which fails to learn generalized feature representations across different networks. In this article, we study a cross-network node classification problem, which aims at leveraging the abundant labeled information from a source network to help classify the unlabeled nodes in a target network. To succeed in such a task, transferable features should be learned for nodes across different networks. To this end, a novel cross-network deep network embedding (CDNE) model is proposed to incorporate domain adaptation into deep network embedding in order to learn label-discriminative and network-invariant node vector representations. On the one hand, CDNE leverages network structures to capture the proximities between nodes within a network, by mapping more strongly connected nodes to have more similar latent vector representations. On the other hand, node attributes and labels are leveraged to capture the proximities between nodes across different networks by making the same labeled nodes across networks have aligned latent vector representations. Extensive experiments have been conducted, demonstrating that the proposed CDNE model significantly outperforms the state-of-the-art network embedding algorithms in cross-network node classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.