Abstract

A teleoperation robot system is connected through a network. However, stochastic delay in such a network can affect its performance, or even make the system unstable. To solve this problem, this paper proposes a teleoperation robot system control method based on fuzzy sliding mode. In the proposed method, a delay generator generates variable delay conforming to a shift gamma distribution designed to simulate actual network delay. In addition, a proposed fuzzy sliding mode controller based on switching gain adjustment is used to rectify the chattering phenomenon in the sliding mode controller of the teleoperation robot system. In the controller, the master hand uses impedance control and realizes feedback from the slave hand. Controller simulation comparison results show that the proposed fuzzy sliding mode controller effectively eliminates the sliding mode control chattering phenomenon as the slave hand stabilizes the tracking velocity of the master hand. Consequently, the system exhibits improved dynamic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.