Abstract

Objectives The commonly used dental base monomers 2,2-bis[ p-(2′-hydroxy-3′-methacryloxypropoxy)phenylene]propane (Bis-GMA) and 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA) require the use of a diluent monomer, such as triethylene glycol dimethacrylate (TEGDMA). The aim of this study was to measure double bond conversion of UDMA/TEGDMA and Bis-GMA/TEGDMA polymeric systems, determine the leachable portion, and analyze network formation by evaluating crosslinking and pendant double bonds. Methods UDMA or Bis-GMA was combined with TEGDMA in systematic increments and irradiated to form light cured polymers. Fourier transform infrared spectroscopy in the near-infrared region was used to measure double bond conversion. The leachable sol fraction was analyzed by 1H NMR. Resin composites were formulated. Flexural strength was measured by three-point bending and volumetric shrinkage was determined with a mercury dilatometer. Results The amount of base monomer greatly influenced double bond conversion, sol fraction, and crosslinking. Increasing base monomer concentration decreased double bond conversion, increased the leachable fraction, and decreased crosslinking and network formation. At mole fractions higher than 0.125, the UDMA polymers had significantly higher conversion than the Bis-GMA polymers. Bis-GMA polymers had higher leachable amounts of unreacted monomer, while UDMA mixtures had more crosslinking than the Bis-GMA mixtures. In regards to the physical properties of resin composites, increasing the base monomer improved flexural strength and decreased volumetric shrinkage. Significance This systematic study for the evaluation of conversion, leachability, crosslinking, and network structure along with physical properties, like volumetric shrinkage and flexural strength, are required for the optimization of competing desirable properties for the development of durable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.