Abstract
The internet has enabled collaborations at a scale never before possible, but the best practices for organizing such large collaborations are still not clear. Wikipedia is a visible and successful example of such a collaboration which might offer insight into what makes large-scale, decentralized collaborations successful. We analyze the relationship between the structural properties of WikiProject coeditor networks and the performance and efficiency of those projects. We confirm the existence of an overall performance-efficiency trade-off, while observing that some projects are higher than others in both performance and efficiency, suggesting the existence factors correlating positively with both. Namely, we find an association between low-degree coeditor networks and both high performance and high efficiency. We also confirm results seen in previous numerical and small-scale lab studies: higher performance with less skewed node distributions, and higher performance with shorter path lengths. We use agent-based models to explore possible mechanisms for degree-dependent performance and efficiency. We present a novel local-majority learning strategy designed to satisfy properties of real-world collaborations. The local-majority strategy as well as a localized conformity-based strategy both show degree-dependent performance and efficiency, but in opposite directions, suggesting that these factors depend on both network structure and learning strategy. Our results suggest possible benefits to decentralized collaborations made of smaller, more tightly-knit teams, and that these benefits may be modulated by the particular learning strategies in use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International AAAI Conference on Web and Social Media
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.