Abstract

The maximum number of edge-disjoint spanning trees in a network has been used as a measure of the strength of a network. It gives the number of disjoint ways that the network can be fully connected. This suggests a game theoretic analysis that shows the relative importance of the different links to form a strong network. We introduce the Network strength game as a cooperative game defined on a graph $$G=(V,E)$$. The player set is the edge-set E and the value of a coalition $$S \subseteq E$$ is the maximum number of disjoint spanning trees included in S. We study the core of this game, and we give a polynomial combinatorial algorithm to compute the nucleolus when the core is non-empty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.