Abstract
Continuous-state network spreading models provide critical numerical and analytic insights into transmission processes in epidemiology, rumor propagation, knowledge dissemination, and many other areas. Most of these models reflect only local features such as adjacency, degree, and transitivity, so can exhibit substantial error in the presence of global correlations typical of empirical networks. Here, we propose mitigating this limitation via a network property ideally suited to capturing spreading. This is the network correlation dimension, which characterizes how the number of nodes within range of a source typically scales with distance. Applying the approach to susceptible-infected-recovered processes leads to a spreading model which, for a wide range of networks and epidemic parameters, can provide more accurate predictions of the early stages of a spreading process than important established models of substantially higher complexity. In addition, the proposed model leads to a basic reproduction number that provides information about the final state not available from popular established models.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.