Abstract

5G technologies promise to revolutionize mobile networks and push them to the limits of resource utilization. Besides better capacity, we also need better resource management via virtualization. End-to-end network slicing not only involves the core but also the Radio Access Network (RAN) which makes this a challenging problem. This is because multiple alternative radio access technologies exist (e. g. ,LTE, WLAN, and WiMAX), and there is no unifying abstraction to compare and compose from diverse technologies. In addition, existing work assumes that all RAN infrastructure exists under a single administrative domain. Software-Defined Radio Access Network (SD-RAN) offers programmability that facilitates a unified abstraction for resource sharing and composition across multiple providers harnessing different technology stacks. In this paper we propose a new architecture for heterogeneous RAN slicing across multiple providers. A central component in our architecture is a service orchestrator that interacts with multiple network providers and service providers to negotiate resource allocations that are jointly optimal. We propose a double auction mechanism that captures the interaction among selfish parties and guarantees convergence to optimal social welfare in finite time. We then demonstrate the feasibility of our proposed system by using open source SD-RAN systems such as EmPOWER (WiFi) and FlexRAN (LTE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.