Abstract

Empowered by the capabilities provided by fifth generation (5G) mobile communication systems, vehicle-to-everything (V2X) communication is heading from concept to reality. Given the nature of high-mobility and high-density for vehicle transportation, how to satisfy the stringent and divergent requirements for V2X communications such as ultra-low latency and ultra-high reliable connectivity appears as an unprecedented challenging task for network operators. As an enabler to tackle this problem, network slicing provides a power tool for supporting V2X communications over 5G networks. In this paper, we propose a network resource allocation framework which deals with slice allocation considering the coexistence of V2X communications with multiple other types of services. The framework is implemented in Python and we evaluate the performance of our framework based on real-life network deployment datasets from a 5G operator. Through extensive simulations, we explore the benefits brought by network slicing in terms of achieved data rates for V2X, blocking probability, and handover ratio through different combinations of traffic types. We also reveal the importance of proper resource splitting for slicing among V2X and other types of services when network traffic load in an area of interest and quality of service of end users are taken into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call