Abstract

In mammals, circadian rhythms throughout the body are orchestrated by the master clock in the hypothalamic suprachiasmatic nucleus (SCN), where SCN neurons are coupled with neurotransmitters to generate a uniform circadian rhythm. How the SCN circadian rhythm is so robust and flexible is, however, unclear. In this paper, we propose a temporal SCN network model and investigate the effects of dynamical rewiring and flexible coupling due to synaptic plasticity on the synchronization of the neural network in SCN. In networks consisting of simple Poincaré oscillators and complex circadian clocks, we found that dynamical rewiring and coupling plasticity enhance the synchronization in inhomogeneous networks. We verified the effect of enhanced synchronization in different architectures of random, scale-free, and small-world networks. A simple mean-field analysis for synchronization in plastic networks is proposed. Intuitively, the synchronization is greatly enhanced because both the random rewiring and coupling plasticity in the heterogeneous network have effectively increased the coupling strength in the whole network. Our results suggest that a proper network model for the master SCN circadian rhythm needs to take into account the effects of dynamical changes in topology and plasticity in neuron interactions that could help the brain to generate a robust circadian rhythm for the whole body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call