Abstract

In addition to maximizing the total revenue, decision-makers in lots of industries would like to guarantee balanced consumption across different resources. For instance, in the retailing industry, ensuring a balanced consumption of resources from different suppliers enhances fairness and helps maintain a healthy channel relationship; in the cloud computing industry, resource-consumption balance helps increase customer satisfaction and reduce operational costs. Motivated by these practical needs, this paper studies the price-based network revenue management (NRM) problem with both demand learning and fair resource-consumption balancing. We introduce the regularized revenue, that is, the total revenue with a balancing regularization, as our objective to incorporate fair resource-consumption balancing into the revenue maximization goal. We propose a primal-dual-type online policy with the upper-confidence-bound demand learning method to maximize the regularized revenue. We adopt several innovative techniques to make our algorithm a unified and computationally efficient framework for the continuous price set and a wide class of balancing regularizers. Our algorithm achieves a worst-case regret of [Formula: see text], where [Formula: see text] denotes the number of products and [Formula: see text] denotes the number of time periods. Numerical experiments in a few NRM examples demonstrate the effectiveness of our algorithm in simultaneously achieving revenue maximization and fair resource-consumption balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.