Abstract

Motivated by networked systems in which the functionality of the network depends on vertices in the network being within a bounded distance T of each other, we study the length-bounded multicut problem: given a set of pairs, find a minimum-size set of edges whose removal ensures the distance between each pair exceeds T . We introduce the first algorithms for this problem capable of scaling to massive networks with billions of edges and nodes: three highly scalable algorithms with worst-case performance ratios. Furthermore, one of our algorithms is fully dynamic, capable of updating its solution upon incremental vertex / edge additions or removals from the network while maintaining its performance ratio. Finally, we show that unless NP ⊆ BPP , there is no polynomial-time, approximation algorithm with performance ratio better than $Ømega (T)$, which matches the ratio of our dynamic algorithm up to a constant factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.