Abstract
Distributed environments are widely used for computing complex applications modeled as task graphs. The computer network becomes more complex when the compute nodes are heterogeneous, however by choosing the appropriate network communication links for communication between a pair of compute tasks can enhance the computing efficiency(called network reconfiguration). One of the steps in heterogeneous network reconfiguration problem is mapping the application task graph edges on the network links. High Performance Computing (HPC) systems are usually heterogeneous, therefore mapping task graph edges on the communication links should consider the two factors: communication cost of task graph edges and the communication capability of network links. The system performance enhances if tasks are mapped on the compute nodes based on the computational costs of the tasks and the processing capability of compute nodes in addition to the edge scheduling on network links. In our earlier algorithm, Heterogeneous Edge and Task Scheduling (HETS) both edge and task mapping simultaneously improve the execution performance of task graphs. The proposed Network Reconfiguration Algorithm (NRA) minimizes the communication overhead and optimizes the schedule length with contention-aware model. NRA reduces an attribute Kirchhoff Index (KI) for optimal network reconfiguration providing minimum execution time. Both synthesized and task graphs of real applications are used for evaluation. The simulation results prove the efficiency of NRA in terms of average schedule length, schedule length ratio, speedup and system throughput. Comparisons with the baseline algorithms show that NRA provides 36% improved results specially for communication-intensive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.