Abstract
This paper presents the results of a pulsed n.m.r. study of molecular motions in poly (methyl methacrylate) (PMMA) and poly (methyl acrylate) (PMA) chains in a series of multicomponent network polymers consisting of poly (vinyl trichloroacetate) (PVTCA) crosslinked with PMMA and with PMA, with emphasis on segmental motions. Results of ancilliary broad line n.m.r. and dilatometric studies are included; the latter demonstrate that in PMA containing polymers microphase separation of the components is complete while in PMMA containing polymers a mixed microphase of PVTCA and PMMA and a pure PMMA microphase are formed. α-Methyl group rotations in PMMA chains and segmental motions in both PMMA and PMA chains are modified with respect to those in the corresponding homopolymers. Modifications to the segmental motions in the crosslinking chains are attributed to the fact that their chain ends are attached to PVTCA chains. It is considered that the comparative rigidity of PVTCA chains ( T g ∼ 60°C) reduces segmental motions in at least portions of the PMA chains ( T g ∼ 5°C) while the comparative mobility of PVTCA enhances segmental motions in PMMA ( T g ∼ 100°C). Thus the molecular mobility of chains of one polymer is to some extent transmitted to chains of another polymer to which it is attached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.