Abstract

Spleen qi deficiency (SQD) syndrome is one of the basic traditional Chinese medicine (TCM) syndromes related to various diseases including chronic inflammation and hypertension and guides the use of many herbal formulae. However, the biological basis of SQD syndrome has not been clearly elucidated due to the lack of appropriate methodologies. Here, we propose a network pharmacology strategy integrating computational, clinical, and experimental investigation to study the biological basis of SQD syndrome. From computational aspects, we used a powerful disease gene prediction algorithm to predict the SQD syndrome biomolecular network which is significantly enriched in biological functions including immune regulation, oxidative stress, and lipid metabolism. From clinical aspects, SQD syndrome is involved in both the local and holistic disorders, that is, the digestive diseases and the whole body's dysfunctions. We, respectively, investigate SQD syndrome-related digestive diseases including chronic gastritis and irritable bowel syndrome and the whole body's dysfunctions such as chronic fatigue syndrome and hypertension. We found innate immune and oxidative stress modules of SQD syndrome biomolecular network dysfunction in chronic gastritis patients and irritable bowel syndrome patients. Lymphocyte modules were downregulated in chronic fatigue syndrome patients and hypertension patients. From experimental aspects, network pharmacology analysis suggested that targets of Radix Astragali and other four herbs commonly used for SQD syndrome are significantly enriched in the SQD syndrome biomolecular network. Experiments further validated that Radix Astragali ingredients promoted immune modules such as macrophage proliferation and lymphocyte proliferation. These findings indicate that the biological basis of SQD syndrome is closely related to insufficient immune response including decreased macrophage activity and reduced lymphocyte proliferation. This study not only demonstrates the potential biological basis of SQD syndrome but also provides a novel strategy for exploring relevant molecular mechanisms of disease-syndrome-herb from the network pharmacology perspective.

Highlights

  • Understanding the biological basis of syndromes (“ZHENG” in Mandarin Chinese) is an essential component of traditional Chinese medicine (TCM) modernization

  • Some studies have explored the biological basis of some typical syndromes in TCM such as Cold syndrome and Hot syndrome

  • Based on network pharmacology analysis, Cold syndrome and Hot syndrome are closely associated with the metabolismimmune imbalance [4]

Read more

Summary

Introduction

Understanding the biological basis of syndromes (“ZHENG” in Mandarin Chinese) is an essential component of traditional Chinese medicine (TCM) modernization. The current research of SQD syndrome is somewhat limited [3] and may not be suitable for elucidating the biological basis of SQD syndrome at a systematic level. Some studies have explored the biological basis of some typical syndromes in TCM such as Cold syndrome and Hot syndrome. Based on network pharmacology analysis, Cold syndrome and Hot syndrome are closely associated with the metabolismimmune imbalance [4]. The biological networks underlying Cold syndrome and Hot syndrome have been applied to clinical investigation by integrating clinical transcriptional profiles. The network modules underlying Cold syndrome indicate that energy metabolism decreased in Cold syndrome

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call