Abstract

Ethnopharmacological relevanceCisplatin (CP), one of the most commonly used antitumor drugs in clinic, could induce reproductive and genetic toxicity. Traditional Chinese medicine believed that this side effect might be caused by the deficiency of both qi and blood. Panax notoginseng (Burk.) F. H. Chen (PN) is a traditional precious Chinese medicine for nourishing blood and hemostasis, which had the synergistic antitumor and reducing toxicity effects. However, the protective effect and mechanism of PN on CP-induced reproductive and genetic toxicity were still unknown.Aim of the study: This study was designed to illuminate the possible protective effect and mechanism of PN on CP-induced reproductive and genetic toxicity. Materials and methodsNetwork pharmacology was first applied to analyze the potential components and targets of PN against CP-induced reproductive and genetic toxicity. Then, the results of network pharmacology were validated in a mouse model of reproductive and genotoxicity induced by CP. Body weight, testis weight, epididymis weight, sperm count, sperm viability and sperm morphology were used to assess protective effects of PN on CP-induced reproductive toxicity. Tail moment in peripheral blood cells and micronucleus in bone marrow cells were used to assess protective effects of PN on CP-induced genetic toxicity. Finally, possible protective targets obtained from network pharmacology, including 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px), were experimentally validated by ELISA. ResultsOne hundred and nineteen components of PN and sixty-eight targets of reproductive/genetic toxicity were acquired and constituted as the component-target network. Network pharmacology analysis showed alleviating oxidative stress might play important role in therapeutic mechanism of PN. In verified experiments, PN significantly improved the decline of body weight, testis weight and epididymis weight, increased sperm count and viability, decreased abnormal sperm morphology rate induced by CP in mice. Moreover, PN also significantly decreased the tail moment in peripheral blood cells and micronucleus formation rate in bone marrow cells in CP-induced mice. Finally, not only the decrease of T-SOD and GSH-Px level but also the increase of 8-OHdG and MDA level in serum were restored under PN treatment. ConclusionCurrent study found that PN could improve CP-induced reproductive and genetic toxicity, which were probably attributed to alleviating oxidative stress. This finding provided the new perspective for understanding the therapeutic effect of PN on CP-induced reproductive and genetic toxicity and facilitating the clinical use of PN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.