Abstract

BackgroundCervical cancer, one of the lethal cancers among women, is a challenging disease to treat. The current therapies often come with severe side effects and the risk of resistance development. Traditional herbal medicine, with its potential to offer effective and less toxic options, is a promising avenue. This study was undertaken to investigate the potential of Rhamnus prinoides (R. prinoides) root bark extracts in selectively inhibiting the proliferation of cervical cancer cells, using the HeLa cell line as an in vitro model. MethodsR. prinoides plant extracts were first screened at a fixed concentration of 200 μg/ml to determine the active extract. The selective anti-proliferative activity of the active extract was evaluated in a concentration dilution assay using the (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) MTT assay on cancerous (HeLa) cells and non-cancerous (Vero) cells to determine the half-maximal inhibitory (IC50) and half-cytotoxic concentrations (CC50), respectively. Functional assays on cell morphology (by microscopy), cell migration (wound healing assay) and cell cycle (by flow cytometry) were also conducted. The active extract was analyzed using Gas Chromatography/Mass Spectrometry (GC/MS) to determine any compounds it contained. Following identification of possible targets by network pharmacology, the genes were validated by molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). ResultsThe ethyl acetate extract of R. prinoides (EARP), the most active extract, selectively inhibited the growth of cervical cancer cells, their migration and induced cell cycle arrest at the S phase. In silico analysis revealed that squalene, 3,3a,6,6-tetramethyl-4,5,5a,7,8,9-hexahydro-1H-cyclopenta[i]indene and Olean-12-en-3.beta.-ol, acetate showed acceptable drug-like characteristics and may be partly attributed to the bioactivity demonstrated and the deregulation of the mRNA expression of AKT1, NF-κB, p53, Bax, Bcl-2, and Er-b-B2. ConclusionThis study, for the first time, demonstrates the anti-proliferation effects of EARP and forms a firm foundation for further drug development studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.