Abstract

BackgroundGlobally, gastric cancer (GC) is recognized as the third leading cause of cancer-related deaths and the fifth most prevalent malignant disease. Multiple studies have indicated that Hedyotis diffusa Willd, in pinyin, called Bai Hua She Cao (BHSSC), a traditional Chinese medicine (TCM) is an herbal remedy for cancer treatment. However, the specific mechanisms underlying its anti-tumor properties and mode of action are still unclear. MethodsTo determine the role of BHSSC in GC, candidate target genes were selected from The Encyclopedia of Traditional Chinese Medicine (ETCM) and analyzed using network pharmacology, bioinformatics, and experimental validation. Differentially expressed genes (DEGs) associated with gastric cancer were obtained from RNA sequencing (RNA-seq) data sourced from The Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD). The Reactome Pathway was examined using Analysis Tools, while KEGG pathways were analyzed using KOBAS. Gene Ontology (GO) evaluations were performed using WebGestalt and DAVID. The relationships between proteins were investigated using the STRING database. Furthermore, cell viability, colony formation, and cell migration ability were conducted in gastric cancer cells, BGC-823 and MGC-803. ResultsNetwork pharmacology and bioinformatics analyses revealed a significant association between BHSSC and metabolic pathways. In vitro experiments demonstrated that BHSSC effectively suppressed gastric cancer cell proliferation and colony formation, inhibited cell migration, and activated the endoplasmic reticulum (ER) stress. Furthermore, it was found that enhancement of the expression of IRE1α and BIP is the mechanism by which BHSSC activates ER stress. ConclusionsThe findings suggest that BHSSC exerts its effects through modulation of metabolic pathways, leading to the suppression of cell proliferation, inhibition of cell migration, and activation of the endoplasmic reticulum. These results provide valuable insights into the mechanisms underlying the therapeutic effects of BHSSC in GC and support its potential as a novel treatment option.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call