Abstract

Spatholobus suberectus Dunn (SSD) possesses potential antitumor activity; however, the mechanism underlying its anti-proliferative effect on breast cancer is unclear. In this study, we explored potential SSD targets for breast cancer treatment through a network pharmacology approach. First, by integrating multiple databases, a total of 16 potential bioactive compounds and 252 targets were screened. Differentially expressed genes (DEGs) were screened by analyzing breast cancer gene chip data from The Cancer Genome Atlas and Gene Expression Omnibus databases. By overlapping drug targets and DEGs, 33 common targets were found; their functions were further analyzed with Gene Ontology and KEGG analysis. A network of 16 compounds and 33 common targets was constructed, from which 10 hub targets were identified using CytoHubba. Based on the KEGG result and network analysis, the 33 common targets were mainly enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway and PPARγ was identified as the potential target of SSD. Moreover, the 10 hub targets were correlated with prognosis and immune infiltration in breast cancer via bioinformatic analysis. Finally, molecular docking and experiments in vitro further verified the targeting ability and anti-breast cancer activity of SSD. SSD is promising in the treatment of breast cancer; PPARγ may be its potential therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call