Abstract

Traditional Chinese medicine (TCM), an age-old healthcare system derived from China, is a mainstream medicine in China and is also popular in many other parts of the world [1-3]. Due to historic reasons, the scientific base of TCM awaits consolidation but emerging evidence has be‐ gun to illustrate TCM as an area of important medical rediscoveries. For example, the 2011 Lask‐ er-DeBakey Clinical Medical Research Award was awarded to Youyou Tu for the discovery of Chinese herb-derived artemisinin, a drug for malaria that has saved millions of lives across the globe [4,5] and the 7th Annual Szent-Gyorgyi Prize was awarded to Zhen-Yi Wang and Zhu Chen for their TCM research that led to the successful development of a new therapeutic approach to acute promyelocytic leukaemia. These award-winning projects were both conducted well be‐ fore the human genome was decoded and when information technology was in infancy. What has TCM to offer in the post-genomic era and the Information Age? To address this important question, the GP-TCM project kicked in as the 1st EU-funded EU-China collaboration dedicated to applying emerging technologies to TCM research [6,7]. Besides the consensus that omics and systems biology approaches will likely play major roles in addressing the complexity of TCM [7-9], more than half GP-TCM consortium members who responded to a consortium survey also cast votes of confidence in network pharmacology in TCM research [7]. Then, what is network pharmacology? What is the state of the art of this technology in modern pharmacological and toxicological studies, and finally, what are its possible roles in TCM research?

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call