Abstract
Crohn's disease (CD) is a chronic inflammatory illness of the digestive system with unknown etiology, and its incidence is increasing worldwide. However, there are currently no effective treatments or medications available for individuals with CD. Therefore, novel therapeutic strategies are urgently needed. The bioactive compounds and targets associated with compounds of Qinghua Xiaoyong Formula (QHXYF) were examined using The Traditional Chinese Medicine Systems Pharmacology database, and 5 disease target databases were also used to identify CD-related disease targets. A total of 166 overlapping targets were identified from QHXYF-related and CD-related disease targets and they were found to be enriched in oxidative stress-related pathways and the PI3K/AKT signaling pathway. Molecular docking was then used to predict how the bioactive compounds would bind to the hub targets. It was found that quercetin could be the core bioactive compound and had good binding affinity to the top 5 hub targets. Finally, animal experiments were performed to further validate the findings, and the results revealed that QHXYF or quercetin inhibited 2,4,6-trinitrobenzenesulfonic acid-induced inflammation and oxidative stress processes by inhibiting the PI3K/AKT pathway, thereby improving CD symptoms. These findings suggest that QHXYF and quercetin may be potential novel treatments for CD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.