Abstract

BackgroundHeart failure (HF) is one of the major causes of mortality worldwide with high recurrence rate and poor prognosis. Our study aimed to investigate potential mechanisms and drug targets of Shenfu Qiangxin (SFQX), a cardiotonic-diuretic traditional Chinese medicine, in treating HF.MethodsAn HF-related and SFQX-targeted gene set was established using disease-gene databases and the Traditional Chinese Medicine Systems Pharmacology database. We performed gene function and pathway enrichment analysis and constructed protein–protein interaction (PPI) network to investigate the potential mechanisms. We also performed molecular docking to analyze the interaction patterns between the active compounds and targeted protein.ResultsA gene set with 217 genes was identified. The gene function enrichment indicated that SFQX can regulate apoptotic process, inflammatory response, response to oxidative stress and cellular response to hypoxia. The pathway enrichment indicated that most genes were involved in PI3K–Akt pathway. Eighteen hub target genes were identified in PPI network and subnetworks. mTOR was the key gene among hub genes, which are involved in PI3K–Akt pathway. The molecular docking analysis indicated that 6 active compounds of SFQX can bind to the kinase domain of mTOR, which exerted potential therapeutic mechanisms of SFQX in treating HF.ConclusionsThe results of network pharmacology analysis highlight the intervention on PI3K–Akt pathway of SFQX in the treatment of HF. mTOR is a key drug target to help protect myocardium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call